基于ADE7878的多路电量检测系统设计

来源:小九直播下载电脑版官网>    发布时间:2024-10-25 22:05:26 1次浏览

  的多路电参教采集系统的硬件电路和程序流程。系统采用LPC2132作为主控芯片,适时控制4052多路开关,切换各路信号,通过I2C通信接口,读取参数,同时通过RS485通信接口,上传电参数。实验根据结果得出,该采集系统最多可采集4路三相电的电压,电流,功率,功率因数,电能均能实现1%的计量精度,具有应用灵活,外围电路简单,可靠性高,成本低的特点。本电路

  随着社会用电容量的扩大,通过适时检测用电信息,实现配电自动化和管理自动化,迫切地需要电量检测及配送向高精度,多功能,智能化方向发展。传统设备存进行多路电量参数监测时,往往采用多个电量监测仪器的方法,区分检测主回路和支路电量参数,系统复杂,成本高。因此,研制一种能够直接进行多路电量检测系统是十分必要的。为此,三相数字电表是利用嵌入式系统,将采样、DSP、ARM等技术集成在一起,实现复费率、多种参数的测量显示、接口丰富、易于扩展的数字电表。文中基于ADE7878芯片设计了一种数控电量检测系统,其可测量1路电压,4路电流,4路功率,1路电能,检测精度均可达1%,并给出了系统的软硬件设计,该设计已在有关产品的研制中得到了应用。同时此设计方法也为有关产品的开发奠定了基础。

  ADE7878是一款高精度、三相电能测量IC。ADE7878适合测量各种三线、四线的二三相配置有功、无功和视在功率,例如Y形或三角形等。各相均具有系统校准功能,即有效值失调校正、相位校准和增益校准。CF1、CF2和CF3逻辑输出可提供许多功率信息:总/基波有功/无功功率、总视在功率或电流有效值和。

  ADE7878具有波形采样寄存器,允许访问所有ADC输出。该器件还提供电能质量测量,例如:短时低压或高压检测、短时高电流变化、线路电压周期测量以及相位电压与电流之间的角度等。利用两个串行接口SPI和I2C,可以与ADE7878通信,同时专用高速接口、高速数据采集(HSDC)端口可以与I2C配合使用,以访问ADC输出和实时功率信息。该器件还有两个中断请求引脚/IRQ0和/IRQ1,用来指示一个使能的中断事件已经发生。

  整个检测系统由LPC2132控制及数据存储模块、信号调理和采集模块、多路信号切换模块和通讯模块组成。我们采用LPC2132控制芯片实现电量检测系统的各项功能。交流电压和电流信号,经过信号调理电路,经过4052多路信号切换电路,输出ADE7878采样范围内的信号,ADE7 878将模拟量信号转换为数字量,LPC2132芯片通过I2C通信接口,获取ADE7878的数据,同时LPC2132适时切换4052多路开关,切换各个支路电流信号输出到ADE7878芯片。检测系统配有EEPROM掉电存储单元,可以将ADE7878的校表参数及电能数据存储。通讯模块通过RS485通信接口,可以与计算机进行数据通信,上传采集到的数据信息。电量检测系统实现原理如图1所示。

  硬件系统模块设计主要分信号调理和采集模块、多路信号切换模块、MCU控制及数据存储模块和通信模块3部分。

  电压采样采用电阻分压的方式实现,用大电阻及小电阻串联,采样小电阻两头电压信号,这样输出端VA(VB,VC)输出一个范围在0~500 mV之间的模拟电压。该模拟电压信号输入到ADE7878中。信号调理和采集电路原理图,如图2所示。

  电流采样的传感器采用电流互感器,一次侧直接为实际测量线路,其二次侧输出为电流信号(具体输出电流的大小根据需要而定),故电流采样采用串联电阻的方式实现,采用两个电阻串联实现,这样可得到一个范围在0~500 mV之间的交流电压信号。该模拟电压信号输入到ADE 7878中电流采样电路计算及电流系数计算公式如式(3)、(4)所示。

  在进行多路电量信号采集时,一定要通过适时切换4052接入ADE7878芯片的模拟信号。实际电路中由于选择使用电阻本身的误差和输入失调、温漂等问题的存在,上述计算公式零位和线性系数会稍有偏差,能够最终靠标定得到准确的系数和零位。

  为了提高采集系统的可靠性,选用基于32位ARM7内核的LPC2132芯片作为主处理器及外部的复位电路实现可靠复位。这样使用一个小的、廉价的处理器核就可实现很高的指令吞吐量和实时的中断响应。MCU控制管理系统电路原理图,如图3所示。

  为了使系统能够正确复位,在此系统中,使用专用复位芯片CAT1025复位。CAT1025集成了系统电源监视电路。当系统电压高于设定电压时,延时200 ms启动系统,这使系统在上电时的复位时间大于LPC2132芯片所需要的复位时间,使系统正常复位。

  本系统,采用一个电能芯片可采集4路的电流,功率或单路电流,功率,电能数据,其实现多路电流检测的关键是通过CD4052/CC4052切换各路电流信号接入ADE7878芯片。

  CD4052/CC4052是一个差分4通道数字控制模拟开关,有A、B 2个二进制控制输入端和INH输入,具有低导通阻抗和很低的截止漏电流。这些开关电路在整个电源范围内具有极低的静态功耗,与控制信号的逻辑状态无关。二位二进制输入信号选通4对通道中的一通道,可连接该输入至输出。其典型应用原理如图4所示。

  在采集多路电流时,LPC2132通过CD4052控制端控制各支路信号接入ADE7878采样管脚,由于ADE7878芯片内部有DSP算法原理,存在数据建立时间问题,故检测各支路电流信号的接入时间不要太短,否则正确数据没有运算完成,数据误差较大。为避免CD4052控制信号线干扰现象发生,将控制信号线接上拉电阻,这样对切换过程影响小,工作可靠。

  LPC2132芯片串行通信接口采用的是TTL电平,它不能直接与PC机标准串行通信接口连接通信,必须设计TTL电平到RS485协议电平信号的转换电路。

  MAX485是一种把TTL电平转换为RS485电平的芯片。RS485总线标准采用平衡发送和差分接收的方式来进行数据通讯,利用信号线A、B间的电压差传输数据,属于两线制的信号传输方式。RS-485总线用于多点互联时十分便捷,可以省掉许多信号线可以互联构成分布式系统,允许最多并联32台驱动器和32台接收器,但对同一信号线上同一时刻只允许一个驱动器工作。

  本系统中,单片机程序由3个模块组成,分别是初始化模块,串口通信模块及ADE7878通信及控制模块。

  系统复位后,单片机先进行各参数(如串口通信波特率)初始化设置.并从EEPROM芯片读取ADE7878校准参数及存储的电能参数,将校准参数写入ADE7878芯片,实现电量参数的准确检测。继而间隔固定时间,适时操作4052开关电路,切换采集各路电量数据,并渎取ADE7878采集的各路电量参数,及时将电能参数存储到EEPROM芯片,并适时清看门狗。如果有正确通信事件发生,则将采集到的电量数据经RS485通信接口上传数据。程序控制流程如图5所示。

  本系统采用的电路,用一个电能计量芯片就可以实现多路电量数据的采集工作,并且在各电量数据额定采样范围内,精度均可达1%,电路简单,应用灵活、精度高、成本低廉。系统各项技术指标均达到了设计的基本要求,工作可靠,并已投入到正常的使用中,有较高的使用价值,对过程监控、数据采集等系统的开发具有借鉴意义。

回到顶部